Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 249: 126070, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37524275

RESUMO

Crystal structures of Pseudomonas veroniil-arginine dehydrogenase (l-ArgDH), belonging to the µ-crystallin/ornithine cyclodeaminase family, were determined for the enzyme in complex with l-lysine and NADP+ and with l-arginine and NADPH. The main chain coordinates of the P. veroniil-ArgDH monomer showed notable similarity to those of Archaeoglobus fulgidusl-AlaDH, belonging to the same family, and pro-R specificity similar to l-AlaDH for hydride transfer to NADP+ was postulated. However, the residues recognizing the α-amino group of the substrates differed between the two enzymes. Based on a substrate modeling study, it was proposed that in A. fulgidusl-AlaDH, the amino group of l-alanine interacts via a water molecule (W510) with the side chains of Lys41 and Arg52. By contrast, the α-amino group of l-arginine formed hydrogen bonds with the side chains of Thr224 and Asn225 in P. veroniil-ArgDH. Moreover, the guanidino group of l-arginine was fixed into the active site via hydrogen bonds with the side chain of Asp54. Site-directed mutagenesis suggested that Asp54 plays an important role in maintaining high reactivity against the substrate and that Tyr58 and Lys71 play critical roles in enzyme catalysis.


Assuntos
NADPH Desidrogenase , Cristalinas mu , NADP/metabolismo , Sequência de Aminoácidos , Arginina , Sítios de Ligação , Cristalografia por Raios X , Especificidade por Substrato
2.
Int J Biol Macromol ; 208: 731-740, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35337912

RESUMO

Ornithine δ-aminotransferase (Orn-AT) activity was detected for the enzyme annotated as a γ-aminobutyrate aminotransferase encoded by PH1423 gene from Pyrococcus horikoshii OT-3. Crystal structures of this novel archaeal ω-aminotransferase were determined for the enzyme in complex with pyridoxal 5'-phosphate (PLP), in complex with PLP and l-ornithine (l-Orn), and in complex with N-(5'-phosphopyridoxyl)-l-glutamate (PLP-l-Glu). Although the sequence identity was relatively low (28%), the main-chain coordinates of P. horikoshii Orn-AT monomer showed notable similarity to those of human Orn-AT. However, the residues recognizing the α-amino group of l-Orn differ between the two enzymes. In human Orn-AT, Tyr55 and Tyr85 recognize the α-amino group, whereas the side chains of Thr92* and Asp93*, which arise from a loop in the neighboring subunit, form hydrogen bonds with the α-amino group of the substrate in P. horikoshii enzyme. Site-directed mutagenesis suggested that Asp93* plays critical roles in maintaining high affinity for the substrate. This study provides new insight into the substrate binding of a novel type of Orn-AT. Moreover, the structure of the enzyme with the reaction-intermediate analogue PLP-l-Glu bound provides the first structural evidence for the "Glu switch" mechanism in the dual substrate specificity of Orn-AT.


Assuntos
Pyrococcus horikoshii , Archaea/metabolismo , Cristalografia por Raios X , Humanos , Modelos Moleculares , Ornitina/química , Fosfato de Piridoxal/química , Pyrococcus horikoshii/metabolismo , Especificidade por Substrato , Transaminases/química
3.
FEBS Open Bio ; 11(7): 1981-1986, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34043290

RESUMO

In this study, we investigated the stereospecificity of hydride transfer from NADH to flavin mononucleotide (FMN) in reactions catalyzed by the FMN-dependent NADH-indigo reductase expressed by thermophilic Bacillus smithii. We performed 1 H-NMR spectroscopy using deuterium-labeled NADH (4R-2 H-NADH) and molecular docking simulations to reveal that the pro-S hydrogen at the C4 position of the nicotinamide moiety in NADH was specifically transferred to the flavin-N5 atom of FNM. Altogether, our findings may aid in the improvement of the indigo dyeing (Aizome) process.


Assuntos
FMN Redutase , Mononucleotídeo de Flavina , Bacillus , Mononucleotídeo de Flavina/química , Índigo Carmim , Simulação de Acoplamento Molecular , NAD/química
4.
Enzyme Microb Technol ; 140: 109627, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32912687

RESUMO

We report, for the first time, the three-dimensional structure and biochemical properties of a UDP-galactose 4-epimerase-like l-threonine 3-dehydrogenase (GalE-like L-ThrDH) from Phytophthora infestans, a plant disease-causing fungus. We identified GalE-like L-ThrDH using Kyoto Encyclopedia of Genes and Genomes (KEGG) database as a candidate target for the development of a new fungicide. The GalE-like L-ThrDH gene was expressed in Escherichia coli, and its product was purified and characterized. N-Acetylglycine was found to act as a competitive inhibitor of the enzyme (Ki =0.18 mM). The crystal structure of the unique hexameric GalE-like L-ThrDH was determined using the molecular replacement method at a resolution of 2.3 Å, in the presence of NAD+ and citrate, an analogue of the substrate. Based on the molecular docking simulation, N-acetylglycine molecule was modeled into the active site and the binding mode and inhibition mechanism of N-acetylglycine were elucidated.


Assuntos
Oxirredutases do Álcool/química , Oxirredutases do Álcool/metabolismo , Phytophthora infestans/enzimologia , UDPglucose 4-Epimerase/química , UDPglucose 4-Epimerase/metabolismo , Oxirredutases do Álcool/antagonistas & inibidores , Oxirredutases do Álcool/genética , Sítios de Ligação , Catálise , Domínio Catalítico , Cristalografia por Raios X , Inibidores Enzimáticos/metabolismo , Glicina/análogos & derivados , Glicina/metabolismo , Concentração de Íons de Hidrogênio , Modelos Moleculares , Simulação de Acoplamento Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura , Treonina/metabolismo , UDPglucose 4-Epimerase/antagonistas & inibidores , UDPglucose 4-Epimerase/genética
5.
Int J Biol Macromol ; 164: 3259-3267, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32861785

RESUMO

The FMN-dependent NADH-indigo reductase gene from the thermophilic bacterium Bacillus smithii was overexpressed in Escherichia coli. The expressed enzyme functioned as a highly thermostable indigo reductase that retained complete activity even after incubation at 100 °C for 10 min. Furthermore, B. smithii indigo reductase exhibited high stability over a wider pH range and longer storage periods compared with indigo reductases previously identified from other sources. The enzyme catalyzed the reduction of various azo compounds and indigo carmine. The crystal structures of the wild-type enzyme in complex with FMN/N-cyclohexyl-2-aminoethanesulfonate (CHES) and the Y151F mutant enzyme in complex with FMN were determined by the molecular replacement method and refined at resolutions of 1.97 and 1.95 Å, respectively. Then, indigo carmine molecule was modeled into the active site using the molecular docking simulation and the binding mode of indigo carmine was elucidated. In addition, the structure of B. cohnii indigo reductase, which is relatively less stable than B. smithii indigo reductase, was constructed by homology modeling. The factor contributing to the considerably higher thermostability of B. smithii indigo reductase was analyzed by comparing its structure with that of B. cohnii indigo reductase, which revealed that intersubunit aromatic interactions (F105-F172' and F172-F105') may be responsible for the high thermostability of B. smithii indigo reductase. Notably, site-directed mutagenesis results showed that F105 plays a major role in the intersubunit aromatic interaction.


Assuntos
Bacillus/metabolismo , FMN Redutase/isolamento & purificação , FMN Redutase/metabolismo , Catálise , Clonagem Molecular , Escherichia coli/genética , Mononucleotídeo de Flavina/metabolismo , Índigo Carmim/química , Índigo Carmim/isolamento & purificação , Cinética , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , NAD/metabolismo , NADH NADPH Oxirredutases/metabolismo , Oxirredutases/metabolismo
6.
Proteins ; 88(5): 669-678, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31693208

RESUMO

A gene encoding galactose 1-phosphate uridylyltransferase (GalT) was identified in the hyperthermophilic archaeon Pyrobaculum aerophilum. The gene was overexpressed in Escherichia coli, after which its product was purified and characterized. The expressed enzyme was highly thermostable and retained about 90% of its activity after incubation for 10 minutes at temperatures up to 90°C. Two different crystal structures of P. aerophilum GalT were determined: the substrate-free enzyme at 2.33 Å and the UDP-bound H140F mutant enzyme at 1.78 Å. The main-chain coordinates of the P. aerophilum GalT monomer were similar to those in the structures of the E. coli and human GalTs, as was the dimeric arrangement. However, there was a striking topological difference between P. aerophilum GalT and the other two enzymes. In the E. coli and human enzymes, the N-terminal chain extends from one subunit into the other and forms part of the substrate-binding pocket in the neighboring subunit. By contrast, the N-terminal chain in P. aerophilum GalT extends to the substrate-binding site in the same subunit. Amino acid sequence alignment showed that a shorter surface loop in the N-terminal region contributes to the unique topology of P. aerophilum GalT. Structural comparison of the substrate-free enzyme with UDP-bound H140F suggests that binding of the glucose moiety of the substrate, but not the UDP moiety, gives rise to a large structural change around the active site. This may in turn provide an appropriate environment for the enzyme reaction.


Assuntos
Proteínas Arqueais/química , Galactosefosfatos/química , Subunidades Proteicas/química , Pyrobaculum/química , UTP-Hexose-1-Fosfato Uridililtransferase/química , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Galactosefosfatos/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Temperatura Alta , Humanos , Cinética , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Pyrobaculum/enzimologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , UTP-Hexose-1-Fosfato Uridililtransferase/genética , UTP-Hexose-1-Fosfato Uridililtransferase/metabolismo
7.
Biosci Biotechnol Biochem ; 82(12): 2084-2093, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30175674

RESUMO

The orientation of the three domains in the bifunctional aspartate kinase-homoserine dehydrogenase (AK-HseDH) homologue found in Thermotoga maritima totally differs from those observed in previously known AK-HseDHs; the domains line up in the order HseDH, AK, and regulatory domain. In the present study, the enzyme produced in Escherichia coli was characterized. The enzyme exhibited substantial activities of both AK and HseDH. L-Threonine inhibits AK activity in a cooperative manner, similar to that of Arabidopsis thaliana AK-HseDH. However, the concentration required to inhibit the activity was much lower (K0.5 = 37 µM) than that needed to inhibit the A. thaliana enzyme (K0.5 = 500 µM). In contrast to A. thaliana AK-HseDH, Hse oxidation of the T. maritima enzyme was almost impervious to inhibition by L-threonine. Amino acid sequence comparison indicates that the distinctive sequence of the regulatory domain in T. maritima AK-HseDH is likely responsible for the unique sensitivity to L-threonine. Abbreviations: AK: aspartate kinase; HseDH: homoserine dehydrogenase; AK-HseDH: bifunctional aspartate kinase-homoserine dehydrogenase; AsaDH: aspartate-ß-semialdehyde dehydrogenase; ACT: aspartate kinases (A), chorismate mutases (C), and prephenate dehydrogenases (TyrA, T).


Assuntos
Aspartoquinase Homosserina Desidrogenase/metabolismo , Thermotoga maritima/enzimologia , Sequência de Aminoácidos , Ácido Aspártico/metabolismo , Aspartoquinase Homosserina Desidrogenase/química , Aspartoquinase Homosserina Desidrogenase/genética , Biocatálise , Eletroforese em Gel de Poliacrilamida , Estabilidade Enzimática , Escherichia coli/genética , Temperatura Alta , Concentração de Íons de Hidrogênio , Cinética , Conformação Proteica , Proteínas Recombinantes/genética , Homologia de Sequência de Aminoácidos , Treonina/metabolismo
8.
Extremophiles ; 22(3): 395-405, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29353380

RESUMO

A gene encoding L-serine dehydrogenase (L-SerDH) that exhibits extremely low sequence identity to the Agrobacterium tumefaciens L-SerDH was identified in the hyperthermophilic archaeon Pyrobaculum calidifontis. The predicted amino acid sequence showed 36% identity with that of Pseudomonas aeruginosa L-SerDH, suggesting that P. calidifontis L-SerDH is a novel type of L-SerDH, like Ps. aeruginosa L-SerDH. The overexpressed enzyme appears to be the most thermostable L-SerDH described to date, and no loss of activity was observed by incubation for 30 min at temperatures up to 100 °C. The enzyme showed substantial reactivity towards D-serine, in addition to L-serine. Two different crystal structures of P. calidifontis L-SerDH were determined using the Se-MAD and MR method: the structure in complex with NADP+/sulfate ion at 1.18 Å and the structure in complex with NADP+/L-tartrate (substrate analog) at 1.57 Å. The fold of the catalytic domain showed similarity with that of Ps. aeruginosa L-SerDH. However, the active site structure significantly differed between the two enzymes. Based on the structure of the tartrate, L- and D-serine and 3-hydroxypropionate molecules were modeled into the active site and the substrate binding modes were estimated. A structural comparison suggests that the wide cavity at the substrate binding site is likely responsible for the high reactivity of the enzyme toward both L- and D-serine enantiomers. This is the first description of the structure of the novel type of L-SerDH with bound NADP+ and substrate analog, and it provides new insight into the substrate binding mechanism of L-SerDH. The results obtained here may be very informative for the creation of L- or D-serine-specific SerDH by protein engineering.


Assuntos
Oxirredutases do Álcool/química , Proteínas Arqueais/química , Simulação de Acoplamento Molecular , Pyrobaculum/enzimologia , Oxirredutases do Álcool/metabolismo , Proteínas Arqueais/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Estabilidade Enzimática , Temperatura Alta , NADP/química , NADP/metabolismo , Ligação Proteica , Serina/química , Serina/metabolismo , Especificidade por Substrato , Tartaratos/química , Tartaratos/metabolismo
9.
Acta Crystallogr D Struct Biol ; 73(Pt 5): 428-437, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28471367

RESUMO

Crystal structures of Lactobacillus buchneri isoleucine 2-epimerase, a novel branched-chain amino-acid racemase, were determined for the enzyme in the apo form, in complex with pyridoxal 5'-phosphate (PLP), in complex with N-(5'-phosphopyridoxyl)-L-isoleucine (PLP-L-Ile) and in complex with N-(5'-phosphopyridoxyl)-D-allo-isoleucine (PLP-D-allo-Ile) at resolutions of 2.77, 1.94, 2.65 and 2.12 Å, respectively. The enzyme assembled as a tetramer, with each subunit being composed of N-terminal, C-terminal and large PLP-binding domains. The active-site cavity in the apo structure was much more solvent-accessible than that in the PLP-bound structure. This indicates that a marked structural change occurs around the active site upon binding of PLP that provides a solvent-inaccessible environment for the enzymatic reaction. The main-chain coordinates of the L. buchneri isoleucine 2-epimerase monomer showed a notable similarity to those of α-amino-ℇ-caprolactam racemase from Achromobactor obae and γ-aminobutyrate aminotransferase from Escherichia coli. However, the amino-acid residues involved in substrate binding in those two enzymes are only partially conserved in L. buchneri isoleucine 2-epimerase, which may account for the differences in substrate recognition by the three enzymes. The structures bound with reaction-intermediate analogues (PLP-L-Ile and PLP-D-allo-Ile) and site-directed mutagenesis suggest that L-isoleucine epimerization proceeds through abstraction of the α-hydrogen of the substrate by Lys280, while Asp222 serves as the catalytic residue adding an α-hydrogen to the quinonoid intermediate to form D-allo-isoleucine.


Assuntos
Isomerases de Aminoácido/química , Isomerases de Aminoácido/metabolismo , Isoleucina/metabolismo , Lactobacillus/enzimologia , Sequência de Aminoácidos , Cristalografia por Raios X , Isoleucina/análogos & derivados , Isoleucina/química , Lactobacillus/química , Lactobacillus/metabolismo , Modelos Moleculares , Conformação Proteica , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/metabolismo , Alinhamento de Sequência
10.
Appl Environ Microbiol ; 83(11)2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28363957

RESUMO

A stable NADP+-dependent d-amino acid dehydrogenase (DAADH) was recently created from Ureibacillus thermosphaericusmeso-diaminopimelate dehydrogenase through site-directed mutagenesis. To produce a novel DAADH mutant with different substrate specificity, the crystal structure of apo-DAADH was determined at a resolution of 1.78 Å, and the amino acid residues responsible for the substrate specificity were evaluated using additional site-directed mutagenesis. By introducing a single D94A mutation, the enzyme's substrate specificity was dramatically altered; the mutant utilized d-phenylalanine as the most preferable substrate for oxidative deamination and had a specific activity of 5.33 µmol/min/mg at 50°C, which was 54-fold higher than that of the parent DAADH. In addition, the specific activities of the mutant toward d-leucine, d-norleucine, d-methionine, d-isoleucine, and d-tryptophan were much higher (6 to 25 times) than those of the parent enzyme. For reductive amination, the D94A mutant exhibited extremely high specific activity with phenylpyruvate (16.1 µmol/min/mg at 50°C). The structures of the D94A-Y224F double mutant in complex with NADP+ and in complex with both NADPH and 2-keto-6-aminocapronic acid (lysine oxo-analogue) were then determined at resolutions of 1.59 Å and 1.74 Å, respectively. The phenylpyruvate-binding model suggests that the D94A mutation prevents the substrate phenyl group from sterically clashing with the side chain of Asp94. A structural comparison suggests that both the enlarged substrate-binding pocket and enhanced hydrophobicity of the pocket are mainly responsible for the high reactivity of the D94A mutant toward the hydrophobic d-amino acids with bulky side chains.IMPORTANCE In recent years, the potential uses for d-amino acids as source materials for the industrial production of medicines, seasonings, and agrochemicals have been growing. To date, several methods have been used for the production of d-amino acids, but all include tedious steps. The use of NAD(P)+-dependent d-amino acid dehydrogenase (DAADH) makes single-step production of d-amino acids from oxo-acid analogs and ammonia possible. We recently succeeded in creating a stable DAADH and demonstrated that it is applicable for one-step synthesis of d-amino acids, such as d-leucine and d-isoleucine. As the next step, the creation of an enzyme exhibiting different substrate specificity and higher catalytic efficiency is a key to the further development of d-amino acid production. In this study, we succeeded in creating a novel mutant exhibiting extremely high catalytic activity for phenylpyruvate amination. Structural insight into the mutant will be useful for further improvement of DAADHs.


Assuntos
Aminoácido Oxirredutases/química , Aminoácido Oxirredutases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , NADP/metabolismo , Planococáceas/enzimologia , Motivos de Aminoácidos , Aminoácido Oxirredutases/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sítios de Ligação , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Planococáceas/química , Planococáceas/genética , Engenharia de Proteínas , Especificidade por Substrato
11.
Protein J ; 36(2): 98-107, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28185046

RESUMO

Superoxide dismutase (SOD) is an antioxidant enzyme protecting cells from oxidative stress. Ginger (Zingiber officinale) is known for its antioxidant properties, however, there are no data on SODs from ginger rhizomes. In this study, we purified SOD from the rhizome of Z. officinale (Zo-SOD) and determined its complete amino acid sequence using N terminal sequencing, amino acid analysis, and de novo sequencing by tandem mass spectrometry. Zo-SOD consists of 151 amino acids with two signature Cu/Zn-SOD motifs and has high similarity to other plant Cu/Zn-SODs. Multiple sequence alignment showed that Cu/Zn-binding residues and cysteines forming a disulfide bond, which are highly conserved in Cu/Zn-SODs, are also present in Zo-SOD. Phylogenetic analysis revealed that plant Cu/Zn-SODs clustered into distinct chloroplastic, cytoplasmic, and intermediate groups. Among them, only chloroplastic enzymes carried amino acid substitutions in the region functionally important for enzymatic activity, suggesting that chloroplastic SODs may have a function distinct from those of SODs localized in other subcellular compartments. The nucleotide sequence of the Zo-SOD coding region was obtained by reverse-translation, and the gene was synthesized, cloned, and expressed. The recombinant Zo-SOD demonstrated pH stability in the range of 5-10, which is similar to other reported Cu/Zn-SODs, and thermal stability in the range of 10-60 °C, which is higher than that for most plant Cu/Zn-SODs but lower compared to the enzyme from a Z. officinale relative Curcuma aromatica.


Assuntos
Rizoma/enzimologia , Superóxido Dismutase/química , /enzimologia , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Clonagem Molecular , Cobre/química , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Superóxido Dismutase/isolamento & purificação , Superóxido Dismutase/metabolismo , Espectrometria de Massas em Tandem , Temperatura , Zinco/química
12.
Proteins ; 84(12): 1786-1796, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27616573

RESUMO

A gene encoding an sn-glycerol-1-phosphate dehydrogenase (G1PDH) was identified in the hyperthermophilic archaeon Pyrobaculum calidifontis. The gene was overexpressed in Escherichia coli, and its product was purified and characterized. In contrast to conventional G1PDHs, the expressed enzyme showed strong preference for NADH: the reaction rate (Vmax ) with NADPH was only 2.4% of that with NADH. The crystal structure of the enzyme was determined at a resolution of 2.45 Å. The asymmetric unit consisted of one homohexamer. Refinement of the structure and HPLC analysis showed the presence of the bound cofactor NADPH in subunits D, E, and F, even though it was not added in the crystallization procedure. The phosphate group at C2' of the adenine ribose of NADPH is tightly held through the five biased hydrogen bonds with Ser40 and Thr42. In comparison with the known G1PDH structure, the NADPH molecule was observed to be pushed away from the normal coenzyme binding site. Interestingly, the S40A/T42A double mutant enzyme acquired much higher reactivity than the wild-type enzyme with NADPH, which suggests that the biased interactions around the C2'-phosphate group make NADPH binding insufficient for catalysis. Our results provide a unique structural basis for coenzyme preference in NAD(P)-dependent dehydrogenases. Proteins 2016; 84:1786-1796. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas Arqueais/química , Coenzimas/química , Glicerolfosfato Desidrogenase/química , NADP/química , NAD/química , Subunidades Proteicas/química , Pyrobaculum/química , Motivos de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Sítios de Ligação , Clonagem Molecular , Coenzimas/metabolismo , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Glicerolfosfato Desidrogenase/genética , Glicerolfosfato Desidrogenase/metabolismo , Ligação de Hidrogênio , Cinética , Modelos Moleculares , NAD/metabolismo , NADP/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Secundária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Pyrobaculum/enzimologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica
13.
Enzyme Microb Technol ; 91: 17-25, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27444325

RESUMO

A gene encoding NAD(P)H-dependent carbonyl reductase (CR) from the hyperthermophilic archaeon Aeropyrum pernix K1 was overexpressed in Escherichia coli. Its product was effectively purified and characterized. The expressed enzyme was the most thermostable CR found to date; the activity remained at approximately 75% of its activity after incubation for 10min up to 90°C. In addition, A. pernix CR exhibited high stability at a wider range of pH values and longer periods of storage compared with CRs previously identified from other sources. A. pernix CR catalyzed the reduction of various carbonyl compounds including ethyl 4-chloro-3-oxobutanoate and 9,10-phenanthrenequinone, similar to the CR from thyroidectomized (Tx) chicken fatty liver. However, A. pernix CR exhibited significantly higher Km values against several substrates than Tx chicken fatty liver CR. The three-dimensional structure of A. pernix CR was determined using the molecular replacement method at a resolution of 2.09Å, in the presence of NADPH. The overall fold of A. pernix CR showed moderate similarity to that of Tx chicken fatty liver CR; however, A. pernix CR had no active-site lid unlike Tx chicken fatty liver CR. Consequently, the active-site cavity in the A. pernix CR was much more solvent-accessible than that in Tx chicken fatty liver CR. This structural feature may be responsible for the enzyme's lower affinity for several substrates and NADPH. The factors contributing to the much higher thermostability of A. pernix CR were analyzed by comparing its structure with that of Tx chicken fatty liver CR. This comparison showed that extensive formation of the intrasubunit ion pair networks, and the presence of the strong intersubunit interaction, is likely responsible for A. pernix CR thermostability. Site-directed mutagenesis showed that Glu99 plays a major role in the intersubunit interaction. This is the first report regarding the characteristics and three-dimensional structure of hyperthermophilic archaeal CR.


Assuntos
Aeropyrum/enzimologia , Oxirredutases do Álcool/química , Oxirredutases do Álcool/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Aeropyrum/genética , Oxirredutases do Álcool/genética , Sequência de Aminoácidos , Animais , Proteínas Arqueais/genética , Proteínas Aviárias/química , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Domínio Catalítico , Galinhas , Clonagem Molecular , Cristalografia por Raios X , Estabilidade Enzimática , Genes Arqueais , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
14.
Sci Rep ; 5: 11674, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26154028

RESUMO

NAD(P)-dependent dehydrogenases differ according to their coenzyme preference: some prefer NAD, others NADP, and still others exhibit dual cofactor specificity. The structure of a newly identified archaeal homoserine dehydrogenase showed this enzyme to have a strong preference for NADP. However, NADP did not act as a cofactor with this enzyme, but as a strong inhibitor of NAD-dependent homoserine oxidation. Structural analysis and site-directed mutagenesis showed that the large number of interactions between the cofactor and the enzyme are responsible for the lack of reactivity of the enzyme towards NADP. This observation suggests this enzyme exhibits a new variation on cofactor binding to a dehydrogenase: very strong NADP binding that acts as an obstacle to NAD(P)-dependent dehydrogenase catalytic activity.


Assuntos
Archaea/metabolismo , Homosserina Desidrogenase/química , Homosserina Desidrogenase/metabolismo , Oxirredutases/metabolismo , Sequência de Aminoácidos , Archaea/genética , Sítios de Ligação , Catálise , Homosserina Desidrogenase/genética , Cinética , Modelos Moleculares , Dados de Sequência Molecular , NADP/química , NADP/metabolismo , Ligação Proteica , Conformação Proteica , Alinhamento de Sequência , Especificidade por Substrato
15.
FEBS J ; 282(20): 3918-28, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26206323

RESUMO

A gene encoding a functionally unknown protein that is specifically expressed in the thyroidectomized chicken fatty liver and has a predicted amino acid sequence similar to that of NAD(P)H-dependent carbonyl reductase was overexpressed in Escherichia coli; its product was purified and characterized. The expressed enzyme was an NAD(P)H-dependent broad substrate specificity carbonyl reductase and was inhibited by arachidonic acid at 1.5 µm. Enzymological characterization indicated that the enzyme could be classified as a cytosolic-type carbonyl reductase. The enzyme's 3D structure was determined using the molecular replacement method at 1.98 Å resolution in the presence of NADPH and ethylene glycol. The asymmetric unit consisted of two subunits, and a noncrystallographic twofold axis generated the functional dimer. The structures of the subunits, A and B, differed from each other. In subunit A, the active site contained an ethylene glycol molecule absent in subunit B. Consequently, Tyr172 in subunit A rotated by 103.7° in comparison with subunit B, which leads to active site closure in subunit A. In Y172A mutant, the Km value for 9,10-phenanthrenequinone (model substrate) was 12.5 times higher than that for the wild-type enzyme, indicating that Tyr172 plays a key role in substrate binding in this carbonyl reductase. Because the Tyr172-containing active site lid structure (Ile164-Gln174) is not conserved in all known carbonyl reductases, our results provide new insights into substrate binding of carbonyl reductase. The catalytic properties and crystal structure revealed that thyroidectomized chicken fatty liver carbonyl reductase is a novel enzyme.


Assuntos
Aldeído Redutase/metabolismo , Modelos Animais de Doenças , Fígado Gorduroso/enzimologia , Regulação Enzimológica da Expressão Gênica , Hipotireoidismo/fisiopatologia , Fígado/enzimologia , Aldeído Redutase/química , Aldeído Redutase/genética , Aldo-Ceto Redutases , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Biocatálise , Domínio Catalítico , Galinhas , Bases de Dados de Proteínas , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Fígado/metabolismo , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , NADP/metabolismo , Fenantrenos/metabolismo , Conformação Proteica , Estabilidade Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Tirosina/química
16.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 2): 344-51, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25664745

RESUMO

Recent microbiological data have revealed that Gram-negative bacteria are able to protect themselves against the lytic action of host lysozymes by secreting proteinaceous inhibitors. Four distinct classes of such inhibitors have been discovered that specifically act against c-type, g-type and i-type lysozymes. Here, the 1.24 Šresolution crystal structure of the periplasmic i-type lysozyme inhibitor from Aeromonas hydrophila (PliI-Ah) in complex with the i-type lysozyme from Meretrix lusoria is reported. The structure is the first to explain the inhibitory mechanism of the PliI family at the atomic level. A distinct `ridge' formed by three exposed PliI loops inserts into the substrate-binding groove of the lysozyme, resulting in a complementary `key-lock' interface. The interface is principally stabilized by the interactions made by the PliI-Ah residues Ser104 and Tyr107 belonging to the conserved SGxY motif, as well as by the other conserved residues Ser46 and Asp76. The functional importance of these residues is confirmed by inhibition assays with the corresponding point mutants of PliI-Ah. The accumulated structural data on lysozyme-inhibitor complexes from several classes indicate that in all cases an extensive interface of either a single or a double `key-lock' type is formed, resulting in highly efficient inhibition. These data provide a basis for the rational development of a new class of antibacterial drugs.


Assuntos
Aeromonas hydrophila/química , Aeromonas hydrophila/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Bivalves/metabolismo , Infecções por Bactérias Gram-Negativas/microbiologia , Muramidase/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Bivalves/química , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Muramidase/química , Muramidase/metabolismo , Conformação Proteica , Alinhamento de Sequência
17.
Biosci Biotechnol Biochem ; 79(2): 196-204, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25514638

RESUMO

To characterize the hydrogen-bonding network in lysozyme, we focused on the residue of Asp48 located at the active site in hen egg-white lysozyme. We constructed a mutant lysozyme (D48A) and analyzed using (GlcNAc)3 and chitin-affinity chromatography. The substrate binding of subsites D-F in D48A and the activity against (GlcNAc)5 were decreased. The parameters of substrate binding and rate constants obtained from computer simulations confirmed these changes. In the crystal structure, (GlcNAc)4 was located at the same position as wildtype. However, the side chains of Arg45 and Thr47 at subsites E-F were moved by the replacement. Further, the loss of the hydrogen bond between Asp48 and Ser50 changed the hydrogen-bonding network, and this resulted in an alteration of the side chain of Asn59. This result suggests that the hydrogen-bonding network plays a crucial in the function of Asp52 and of transglycosylation at subsites E-F.


Assuntos
Ácido Aspártico , Muramidase/química , Muramidase/metabolismo , Animais , Domínio Catalítico , Galinhas , Cristalografia por Raios X , Estabilidade Enzimática/efeitos dos fármacos , Guanidina/farmacologia , Ligação de Hidrogênio , Modelos Moleculares , Muramidase/genética , Mutagênese Sítio-Dirigida , Mutação
18.
Biosci Biotechnol Biochem ; 79(5): 710-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25516375

RESUMO

Methylmalonyl-CoA mutase (MCM) requires 5'-deoxyadenosylcobalamin (AdoCbl) as a cofactor and is widely distributed in organisms from bacteria and animals. Although genes encoding putative MCMs are present in many archaea, they are separately encoded in large and small subunits. The large and small subunits of archaeal MCM are similar to the catalytic and AdoCbl-binding domains of human MCM, respectively. In Pyrococcus horikoshii OT3, putative genes PH1306 and PH0275 encode the large and small subunits, respectively. Because information on archaeal MCM is extremely restricted, we examined the functional and structural characteristics of P. horikoshii MCM. Reconstitution experiments using recombinant PH0275 and PH1306 showed that these proteins assemble in equimolar ratios and form of heterotetrameric complexes in the presence of AdoCbl. Subsequent immunoprecipitation experiments using anti-PH0275 and anti-PH1306 antibodies suggested that PH0275 and PH1306 form a complex in P. horikoshii cells in the presence of AdoCbl.


Assuntos
Metilmalonil-CoA Mutase/química , Metilmalonil-CoA Mutase/metabolismo , Pyrococcus horikoshii/enzimologia , Sequência de Aminoácidos , Clonagem Molecular , Cobamidas/metabolismo , Eletroforese em Gel de Poliacrilamida , Metilmalonil-CoA Mutase/genética , Dados de Sequência Molecular , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
19.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 7): 890-5, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25005083

RESUMO

The crystal structure of a D-tagatose 3-epimerase-like protein (MJ1311p) encoded by a hypothetical open reading frame, MJ1311, in the genome of the hyperthermophilic archaeon Methanocaldococcus jannaschii was determined at a resolution of 2.64 Å. The asymmetric unit contained two homologous subunits, and the dimer was generated by twofold symmetry. The overall fold of the subunit proved to be similar to those of the D-tagatose 3-epimerase from Pseudomonas cichorii and the D-psicose 3-epimerases from Agrobacterium tumefaciens and Clostridium cellulolyticum. However, the situation at the subunit-subunit interface differed substantially from that in D-tagatose 3-epimerase family enzymes. In MJ1311p, Glu125, Leu126 and Trp127 from one subunit were found to be located over the metal-ion-binding site of the other subunit and appeared to contribute to the active site, narrowing the substrate-binding cleft. Moreover, the nine residues comprising a trinuclear zinc centre in endonuclease IV were found to be strictly conserved in MJ1311p, although a distinct groove involved in DNA binding was not present. These findings indicate that the active-site architecture of MJ1311p is quite unique and is substantially different from those of D-tagatose 3-epimerase family enzymes and endonuclease IV.


Assuntos
Proteínas Arqueais/química , Carboidratos Epimerases/química , Methanocaldococcus/química , Agrobacterium tumefaciens/química , Agrobacterium tumefaciens/enzimologia , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Carboidratos Epimerases/genética , Carboidratos Epimerases/metabolismo , Clostridium cellulolyticum/química , Clostridium cellulolyticum/enzimologia , Cristalografia por Raios X , Desoxirribonuclease IV (Fago T4-Induzido)/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Temperatura Alta , Methanocaldococcus/enzimologia , Modelos Moleculares , Dobramento de Proteína , Multimerização Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia Estrutural de Proteína
20.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 5): 1271-80, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24816096

RESUMO

Glucose dehydrogenase from the thermoacidophilic archaeon Thermoplasma volcanium (tvGlcDH) is highly active towards D-glucose and D-galactose, but does not utilize aldopentoses such as D-xylose as substrates. In the present study, the crystal structures of substrate/cofactor-free tvGlcDH and of a tvGlcDH T277F mutant in a binary complex with NADP and in a ternary complex with D-glucose and nicotinic acid adenine dinucleotide phosphate, an NADP analogue, were determined at resolutions of 2.6, 2.25 and 2.33 Å, respectively. The overall structure of each monomer showed notable similarity to that of the enzyme from Sulfolobus solfataricus (ssGlcDH-1), which accepts a broad range of C5 and C6 sugars as substrates. However, the amino-acid residues of tvGlcDH involved in substrate binding markedly differed from those of ssGlcDH-1. Structural comparison revealed that a decreased number of interactions between the C3-hydroxyl group of the sugar and the enzyme are likely to be responsible for the lack of reactivity of tvGlcDH towards D-xylose.


Assuntos
Glucose 1-Desidrogenase/química , Glucose 1-Desidrogenase/metabolismo , Thermoplasma/enzimologia , Sequência de Bases , Sítios de Ligação , Cristalografia por Raios X , Glucose/química , Glucose/metabolismo , Glucose 1-Desidrogenase/genética , Glucose 1-Desidrogenase/isolamento & purificação , Modelos Moleculares , Dados de Sequência Molecular , Mutação , NADP/análogos & derivados , NADP/química , NADP/metabolismo , Conformação Proteica , Especificidade por Substrato , Sulfolobus solfataricus/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...